
Cognitive Ontologies, Task Ontologies, and Explanation in Cognitive Neuroscience. 
 
1. Introduction.   
 
The development of new scientific tools provides opportunities for progress, but also gives 
scientists reason to reinvestigate, reconsider, and maybe revise their assumptions about the 
domain under investigation.  In cognitive neuroscience, this has manifested in the debate 
over “cognitive ontology” – that is, the set of mental functions or faculties investigated by 
the neurosciences.  Psychology comes equipped with a series of intuitive mental categories 
– perception, cognition, memory, imagination, verbal reasoning, emotion, etc.  Cognitive 
neuroscience has traditionally proceeded under the assumption that these, or some suitably 
explicated set of these, will be realized in the processes that neuroscientists investigate.  For 
better or worse, however, this assumption sits poorly with the current evidence, which 
indicates the massive multifunctionality of individual parts of the brain, the wide 
distribution of activity corresponding to intuitive mental categories, and the importance of 
global network and ecological context in determining what an individual part of the brain 
does.  These data stress, and perhaps break, the “new phrenological” (Uttal, 2001) approach 
to cognitive and systems neuroscience, invalidating cherished means of analysis such as 
subtractive methodology and reverse inference.   
 
One powerful thought in the field is that part of the problem is our intuitive conception of 
psychology.  Indeed, Poldrack once said that “the fundamental problem is our stone age 
psychological ontology” (Bunzl, Hanson, & Poldrack, 2010, p. 54).  Perhaps the standard 
mentalistic categories used in the psychological sciences are just too simple, too general, 
and too crude to capture how the brain implements behavior.  Perhaps those categories 
need to be revised, refined, or even abandoned to understand brain function.  A host of 
questions immediately arises, however, surrounding how committed we should remain to 
our standard list of cognitive kinds.  Do they successfully describe brain function, only at a 
network level?  Could we discover discrete implementations of kinds if they are suitably 
amended, for instance by subdividing them into more specific kinds?  Or should they just 
be gotten rid of, resulting in a view of the brain on which it is “unanalyzable” (Uttal, 2001) 
into distinct functions, where its function is “protean” and lacking generalizability (Hutto, 
Peeters, & Segundo-Ortin, 2017)? 
 
Theorists interested in cognitive ontology are thus facing a conundrum that is both 
methodological and ontological.  What cognitive categories are realized in the brain cannot 
be determined independently of our methods of investigation.  But in cognitive 
neuroscience, those methods traditionally employ those categories as basic assumptions – 
i.e., they are what is being investigated, and thereby constrain interpretation of otherwise 
inscrutable brain data.  Theorists have begun to use formal tools from databasing, machine 
learning, and meta-analysis as a way of addressing this problem.  The hope is that the use 



of these tools can turn the issue of cognitive ontology into a problem for data science, rather 
than metaphysics.  By analyzing large amounts of studies using an agreed upon, publicly 
shareable taxonomy of cognitive function, neuroscientists hope to be able to discover the 
ways in which cognitive categories relate to brain activation, and thereby provide a 
groundwork for the substantiation, revision, or abandonment of those categories.   
 
I refer to these projects collectively as “databasing and brain mapping” projects, and in this 
paper, I assess their status and prospects.  Ultimately, I will argue that the problem is not so 
much with our intuitive mental ontology per se, but with the standard explanatory 
framework assumed by the cognitive neurosciences.  The standard framework assumes that 
categories of mental function are explanatory kinds, and that cognitive neuroscience 
proceeds by showing how these explanatory categories are instantiated in brain activity.  As 
such, the standard framework is committed to there being an ultimate taxonomy of distinct 
and discretely realized cognitive kinds, whose instantiation in the brain causally explains 
behavior.  I will argue that databasing and brain mapping projects, rather than 
substantiating this standard framework, should inspire us to abandon it.  Instead, I 
advocate an alternative view of neuroscientific explanation on which what explains are 
ways in which brain systems organize to implement the informational demands of a 
particular task or context (Author’s paper).  On this alternative, the best reading of the role 
of psychological constructs is as heuristics for investigation, rather than as explanatory kinds 
(cf. Feest, 2010).  
 
My aims are both descriptive and normative.  I both believe that this is what successful 
neuroscientific explanation does look like, and that it is how we should think about it.  This 
comes along with a variety of methodological prescriptions, including a plea for increased 
focus on task, rather than cognitive ontologies.  I hope to clarify the potential advantages and 
pitfalls of using formal analytical tools in the cognitive ontology debate along the way.   
 
I proceed as follows.  In section 2, I introduce the standard explanatory framework of 
cognitive neuroscience, articulate its commitments, and discuss methodological and 
empirical problems for the framework present in the literature.  Then, in section 3, I outline 
some of the formal tools that have been applied to the problem, and in section 4 show that 
no clear consensus has emerged on how results employing these methods are supposed to 
relate to the standard framework.  In section 5 I outline my preferred approach to 
understanding the role of psychological constructs in neuroscientific explanation, and in 
section 6 show how this approach offers distinct normative prescriptions that the standard 
framework.  Section 7 concludes.   
 
2.  The Standard Explanatory Framework of Cognitive Neuroscience 
 



As I understand it, the standard explanatory framework in cognitive neuroscience is as 
follows.  First, psychological kinds are explanatory.  Behavior is explained by citing mental 
functions such as memory, attention, language processing, action planning, etc.  Second, 
explanation is causal explanation.  It is the realization of psychological kinds in neural 
processes that explains behavior.  To take one philosophical gloss on the issue, consider 
Piccinini and Craver’s (2011) account of the role of psychological theories in cognitive 
neuroscience.  Psychology, on their view, provides mechanism sketches of cognitive 
phenomena.  They outline a causal sequence of mental functions that can explain the 
phenomena of interest.  A full mechanism schema, on the other hand, will show how this 
abstract functional organization is realized in lower-level causal interactions in the brain, 
eventually bottoming out in the electrical and chemical processes of individual cells.    This 
can be read as a way of combining Cummins’ (1983) functional decomposition approach to 
psychological explanation, with the explanatory goals of cognitive neuroscience. 
 
This kind of view is very influential (Boone & Piccinini, 2016), describes the traditional 
explanatory practices of cognitive neuroscientists well, and comes with a number of 
advantages.  First, it gives a metaphysically appealing picture of mental causation, wherein 
psychological states cause behavior via their realization relation to the physical processes of 
the brain.  Second, it explains the importance of operationalization and localization in 
cognitive neuroscience.  ‘Memory’ is not something we can study directly; we can only 
study behavior.  On the standard story, behavioral tasks are designed to dissociate the 
different components of putative cognitive processes.  The brain is then studied to show 
how those functional differences are causally realized in distinct part of the brain.  These 
changes can be measured either through differences in activation – the traditional 
“subtraction” methodology in fMRI research – or through intervention, by studying 
artificially induced or naturally occurring brain injuries.  By finding different localizations 
of distinct functions, one explains the causal differences between, for example, a memory 
process and an attentional process.  A diagram of the standard framework is provided 
below. 
 

 



 
Figure 1.  The standard explanatory framework. 

 
Despite its appeal, the standard framework faces a large class of problems, which we can 
generally refer to as individuation problems.  Individuation problems are the result of the 
realism about psychological kinds inherent in the standard framework, along with the 
complexity of causal processes in the brain.  Basically, different explanantia need to be 
distinct.  The standard framework is committed, in each instance, to establishing exactly 
what psychological functions are explaining a behavior, how they interact, and how the 
behavior arises as a result of that interaction.  Individuation problems lead us to question 
whether this commitment is in fact met in cognitive neuroscience – they suggest that, very 
frequently, we have not, and even cannot, establish exactly which psychological faculties are 
at work and the pattern of their interaction. 
 
There are two kinds of individuation problems that have seen extensive discussion in the 
literature.  The first is an individuation problem with operationalization and measurement.  
The question here is whether tasks individuate particular mental faculties.  Sullivan (2010), 
for instance, questions whether the Morris water maze, a famous task in neuroscience, can 
be taken as a specific measurement of ‘spatial memory’, the cognitive kind with which it is 
generally associated, rather than measuring learning, the change of representational 
capacities, or just ability to find a platform under the surface of some water.  Sullivan (2014) 
also applies the argument to tasks such as Stroop tasks.  While standardly thought of as 
measuring attention, Sullivan persuasively argues that elements of attention, memory, 
language processing, and perceptual processing are all indexed in the standard versions of 
Stroop tasks. 
 
The second version of individuation problem applies to the kinds themselves.  The worry is 
that psychological kinds are simply not distinct from one another.  So, perhaps memory is 
not distinct, metaphysically speaking, from action planning or imagination (De Brigard, 
2014; Schacter, Benoit, De Brigard, and Szpunar, 2015; but cf. Robins, 2016).  Perhaps 
“basic” emotions (Griffiths, 2002), or “concepts” (Machery, 2009), or psychiatric categories 
such as “schizophrenia” (Tekin, 2016) do not correspond to natural kinds.  Recently, these 
worries have been extended to core cognitive capacities like working memory (Gomez 
Lavin, 2020). 
 
I am moved by these considerations, but will not focus on them here.  What I will assess in 
detail is the last variety of individuation problem, which occurs in the purported realization 
of cognitive kinds.  The traditional approach to cognitive neuroscience hopes to specify the 
function of each part of the brain.  This “atomistic” (Burnston, 2019) approach is motivated 
by the goal of causal decomposition in the brain.  If we can specify the function of each part, 
then we can understand any given behavior as the result of causal interaction between 



these functions.  A one-to-one mapping between the mental ontology and the 
neuroscientific ontology would occasion a particularly powerful form of mechanistic 
explanation.   
 
Current data, however, sits uneasily with individuating atomic mappings between 
functions and brain activation.  Widespread data from many distinct parts of the brain 
suggest the multifunctionality of individual brain parts, overlap between instantiations of 
distinct mental categories, and distribution of brain activation corresponding to distinct 
kinds.  Multifunctionality of particular parts of the brain undermines the ability to say, 
given activation in a particular part, what function that part is performing, and hence how 
it is causally interacting with other parts.  This is part of the problem with the traditional 
subtractive methodology and reverse inference.  Overlap and distribution of function 
undermines the ability to distinguish between the causal contribution of distinct kinds at 
the neural level. 
 
It is worth considering further why this is.  Suppose we are observing a behavior, and 
activation in a number of parts of the brain.  If one can decompose the behavior into distinct 
psychological processes, and localize each of those processes, then one can theorize about 
the causal interactions between them.  But significant distribution and overlap of 
instantiation muddy the division between localization and interaction.  This is because they 
allow for too much inferential freedom in how one interprets the instantiation relation.  
Suppose two putatively distinct faculties overlap in their instantiation.  Is this due to the 
fact that they share some common functional core, and other elements that differ?  Is it 
because we have not explicated them sufficiently relative to each other?  Or is it because 
they are not, in fact, distinct after all?  Similarly, given wide distribution corresponding to a 
given function, is that distribution indication that the construct ranges over multiple 
distinct sub-functions that interact?  Or that our experiments in fact index multiple distinct 
functions?  Or, again, that the construct does not describe the mechanistic functioning of the 
brain? 
 
In most cases of mental faculties, this is the situation that actually obtains – the data 
suggests multifunctionality, distribution, and overlap.  But the standard framework 
requires that distinct explanantia be distinct, including in their instantiations.  So, the 
current data conflicts with the standard framework.  Given this conflict, one can either 
attempt further work to substantiate the standard framework, or one can abandon it.  To 
substantiate the framework, one would have to either try to further differentiate the 
instantiation relations between distinct kinds, or revise the ontology so that more specific 
mappings emerge.  One could, of course, pursue some combination.  If abandoning the 
framework, one would have to specify what kind of explanation results from that 
abandonment. 
 



The idea of revision of the cognitive ontology is appealing, and it is often suggested in 
mechanistic contexts that higher-level kinds will have to be split or revised in light of causal 
explanation at a lower level (Bechtel, 2008; Bickle, 2003).  Similarly, it is often suggested that 
databasing and brain-mapping techniques can help us revise our ontology.  I will consider 
these claims in detail in the next section.  But it is worth noting that the ontology revision 
proposal is less anodyne then is normally supposed.  Attempting to fine-grain our 
taxonomy does not guarantee that distinct functions will be discovered – Feest (2010), for 
instance, nicely explains how continuous attempts to distinguish implicit memory from 
other forms of memory are what eventuated in the conclusion that implicit memory may 
not be distinct from perceptual association.  And even a successful distinction may not be 
mechanistically useful – attempts to distinguish face perception, body perception, and place 
perception, for instance, do not show clearly distinct realizers but interdigitated 
“archipelagoes” of voxels with statistical preference for one kind of information over 
another (Kanwisher, 2010), but not clearly distinct parts with causal interactions between 
them.   
 
In the next two sections, I introduce databasing and brain mapping techniques in more 
detail, and argue that, while proponents of these techniques are generally realist about 
psychological kinds, they do not clearly opt for either substantiation, revision, or 
abandonment of the standard framework, instead vacillating between these options.  I also 
raise doubts that the databasing and brain mapping techniques on offer can perform any of 
these functions.  This motivates my own take on the issue, which I will pursue in section 5. 
 
3.  Databasing and Brain Mapping 
 
There are two main aspects to the databasing and brain mapping projects I will discuss.   
The first is the collection of compendious amounts of neural data from across studies.  The 
shareability of scientific data, as well as the best means to collect it, disseminate it, and use 
it are problems across the biological sciences (see, e.g., Bechtel, 2017; Darden, Pal, Kundu, & 
Moult, Forthcoming; Leonelli, 2012), and neuroscience is no different.  One reaction to the 
massive amount of research using, for instance, fMRI methodology, is to try to systematize 
and understand this expansive dataset as a whole.  So, collection of the information is the 
first step.  Several open-access databases have been created in cognitive neuroscience to 
play this role, including the Brain Map (Fox & Lancaster, 2002), Neurosynth (Yarkoni et al., 
2011), The Cognitive Atlas (Poldrack et al., 2011), the Experiment Factory (Sochat et al., 
2016), and The Cognitive Paradigm Ontology (Turner & Laird, 2012).   
 
While these projects differ in their precise focus, they all share a number of aspects.  First, 
the idea is to collect activation data in a theoretically unbiased way.  What is archived is the 
raw activation data from a set of fMRI studies.  One can then ask questions about this data.  
Second, one of the questions that everyone wants to ask about this data is how, whether, 



and in what sense patterns in the data correspond to psychological concepts.  This is done 
in a number of ways.  In the Cognitive Atlas, each study, in addition to the data, is 
categorized according to the type of tasks manipulated.  Each task-type is then defined, and 
the psychological concepts that it is supposed to measure are listed.  So, one can look for the 
ways in which the same tasks/concepts are realized similarly or differently across different 
tasks, or one can look at how different tasks/concepts diverge or overlap.  In Neurosynth, 
the text of papers is archived along with the raw fMRI data, so one can look for ways in 
which usage of key mental terms by scientists varies along with changes in brain activation, 
and vice-versa.  Finally, the hope across these projects is that the search for patterns can be 
automated.  Given the scale of the data set, automated data analysis is used in the attempt to 
find meaningful patterns. 
 
The analytical techniques applied to this collected data range from traditional meta-
analyses to statistical classifiers to generative, probabilistic models, each with their 
associated benefits and detractions.  Meta-analytic techniques take already reported 
correlations between cognitive concepts and activation patterns, and attempt to identify, 
generalize, and summarize the relationships discovered in the literature.  Statistical 
decoders train models to predict, given the presence of brain activation, what cognitive 
concepts are being assessed in the range of studies (or vice versa, see below).  While there 
are a range of generative models, one popular technique is Latent Dirichlet Allocation, which 
is a Bayesian algorithm that models the text in a corpus of words (in this case, the text from 
fMRI studies) as being generated by a grouping of topics, themselves construed as 
probabilistic groupings of individual words.  One can then attempt to correlate greater 
influence (or “loadings”) of those topics with brain activation.   
 
There are a range of attitudes taken by brain mappers to their projects, which I will discuss 
in detail below.  In general, however, I think there are two fundamental assumptions they 
share.  First, they are realists about mental faculties.  Second, and relatedly, they are 
committed to the measurement relation between tasks and those faculties.  For instance, 
Hastings et al. (2014) describe the project as one on which “ontological realism is a 
foundation” (p. 4).  Lenartowicz et al. (2010) suggest that “the elements of the mental 
ontology are not directly accessible but rather must be accessed through experimental 
manipulations and measurements (i.e., tasks)” (p. 680). 
 
In these quotes, theorists are committing to the idea that mental functions are real entities, 
and that tasks are measurements of them.  This is reflected in much of the databasing work.  
In the Cognitive Atlas and Brain Map, for instance, tasks are explicitly categorized 
according to the mental constructs they are supposed to measure.  While Neurosynth 
collects a range of textual data, the preprocessing of that data indicates a realist 
commitment.  Generally, LDA models using Neurosynth focus on the abstracts of paper, 
and specifically on the cognitive terms contained therein.  In attempting to map these uses 



to the brain, then, these projects assume that, at least at an abstract level, the concepts we 
employ in thinking about the brain correspond to physical categories within the brain.   
 
As I will show below, this set of commitments interacts in complicated ways with the 
standard framework.  For now, I want to discuss a few early results from these frameworks 
to show that, far from solving individuation problems, brain mapping projects tended to 
illustrate them.  The question will then be what attitudes brain mappers take to these 
results. 
 
In a meta-analysis of fMRI research, Anderson, Kinnison, and Pessoa (2013) compared 
different patterns of activation according to the cognitive categories listed in Brain Map.  
They were interested in a number of properties, including the range of cognitive concepts 
associated with each area’s activation, the distribution of activation corresponding to those 
concepts, and the degree to which distinct brain areas were likely to be active in studies 
measuring the same mental concepts.  What they showed was that individual parts of the 
brain exhibit a range of “diversity profiles,” but that most areas’ activation corresponded 
with significantly more than one cognitive concept.  Moreover, areas within previously 
identified functional-connectivity networks tended to be highly “assorative,” meaning they 
tended to be active for similar cognitive concepts, suggesting both the distribution of 
individual functions and the overlap in neural activation between functions.  Importantly, 
taking functional networks such as the “fronto-parietal” network and the “ventral 
attention” network, as basic units to correlate with cognitive concepts showed a similar 
pattern of results.   
 
Poldrack, Halchenko, and Hanson (2009) performed a decoding analysis of the results from 
eight different fMRI studies investigating a range of cognitive constructs.  They began with 
statistical maps of the entire brain – i.e., z-scored activation coordinates from every 
condition in the eight studies.  The question was then whether one could train a decoder to 
predict which tasks and/or cognitive concepts were named in the studies, such as “risk-
taking”.  They trained a support vector machine to predict, on the basis of a given brain-
wide activation, what task and what cognitive concept was being measured in a case, and 
showed that the classifier could successfully classify both with 80-90% accuracy.  They 
further trained a neural network with six hidden nodes to match the predictive accuracy of 
the support vector machine.  Importantly, however, the nodes operated over a widely-
distributed set of voxels.  When analyzed as a six-dimensional system (one for each hidden 
node), each cognitive concept was shown to be related to a combination of each dimension, 
and each dimension was associated with a range of cognitive concepts. 
 
Poldrack et al. (2012) performed a topic modeling analysis with the following structure.  
First, they took the results and text from over 5,000 papers in the Neurosynth database.  They 
began by exploring the topic structure in the text.  They then selected topics that 



corresponded to mental concepts in the Cognitive Atlas, and measured how the topic 
loadings on these topics correlated with brain activity.  Here, however, they also show 
multifunctionality and distribution in the results.  For instance, they report:  “topic 43 (with 
terms related to visual attention) was associated with activity in the bilateral lateral 
occipital cortex, parietal cortex, and frontal cortex. Topic 86 (with terms related to decision 
making and choice) was associated with regions in the ventral striatum, medial, orbital, and 
dorsolateral prefrontal cortex. Topic 93 (with terms related to emotion) was associated with 
bilateral activity in the amygdala, orbitofrontal cortex, and medial prefrontal cortex” (2012, 
p. e1002707). 
 
These results are perfectly interesting in their own right, in that they quantify the 
“specificity” with which our intuitive cognitive concepts interact with brain activation.  It is 
just that, on their face, they are in conflict with the standard model because they show 
multifunctionality and distribution rather than univocal relationships between 
psychological constructs and activation.  The question is what to do in response to these 
results with regards to the standard framework.   
 
Let me stress that I am reconstructing positions here – I think each of the options I am about 
to articulate is present, to some degree, across papers and theorists within the field.  As far 
as I can tell, there are three options with regards to the standard framework.  First, one 
could attempt to substantiate the framework by pursuing more fine-grained analyses in an 
attempt to discover more and more specific activation patterns for particular cognitive 
concepts, perhaps further leading to decomposition and causal explanation.  Second, one 
could attempt to use the analyses to revise our cognitive ontology.  On this view, it might be 
the case that the standard framework can be maintained, but only after the appropriate 
revisions to the ontology.  Third, one might use these results as motivation to abandon the 
standard framework altogether, and opt for some other kind of project.  In the next section, 
I outline each of these perspectives, along with examples from the literature which might 
suggest them, and give reasons to question them.  This will motivate my own proposal 
about psychological constructs in section 5.   
 
4.  Three options with regards to the standard framework.   
 
4.1  Substantiate? 
 
One view one could take towards the standard framework is that it is basically right, and 
our ontology is basically right, but that the results of multifunctionality and distribution are 
due to insufficiently fine-grained measurement.  The solution, if this is one’s perspective, 
would be to refine analyses so that the “true” and univocal association between 
psychological constructs and brain activation can be uncovered. 
 



I think that this is the position that is least strongly considered in the literature, but there 
are a few trends that suggest it.  Indeed, one direction in which the literature has gone over 
the last few years is in the direction of more fine-grained analysis and the search for 
increased specificity.  Poldrack and Yarkoni (2016) thus describe the project as one of 
“quantifying the true specificity of hypothesized structure-function associations” (p. 589).  
This, one assumes, means that they indeed take there to be relations there to be discovered, 
further indicating realism about psychological kinds.  Moreover, recent projects take the 
goal of brain mapping projects to be enabling both forward and reverse inference – that is, the 
predictive ability of brain mapping models between constructs and activation patterns 
should be bidirectional.  This, to me at least, further suggests a belief in the importance of 
the instantiation relation.  Finally, there is how these projects are qualitatively described.  
For instance, Varoquaux et al (2018) suggest that one of the goals of mapping projects is 
“precisely describing the function of any given brain region” (2018, p. 1). 
 
Varoquaux et al. performed a decoding analysis using a hierarchical general linear model 
(GLM) framework.  In particular, their reverse-inference required on multiple layers of 
linear regressions on activity in the brain.  The first layer was tuned to individual 
oppositions between task conditions.  Then, a second layer used another regression that 
compared each cognitive term to all others, predicting which term was overall most 
relevant.  They compared the results of this decoder to other approaches, showing that it 
resulted in sharper divisions between distinct functions.   
 
There are a few things to be said here, however.  First, this study measured terms in the 
Cognitive Paradigm Ontology rather than the Brain Map or the Cognitive Atlas, and these 
terms more directly describe task conditions (e.g. “response with left hand”) than 
psychological constructs (e.g., “motor control”).  Second, they focused primarily on 
perceptual and motor areas for which there are already more-or-less well-understood 
general function ascriptions.  Finally, even these results showed distributed and 
interdigitated functional populations, with, for instance, “face” and “place” areas being 
more or less separated, but each involving multiple subpopulations distinct from each 
other. 
 
Another recent approach to bidirectional decoding is from Rubin et al. (2017), which 
employs LDA on over 11,000 articles from Neurosynth.  They start by noting that previous 
studies show mainly wide patterns of activation for particular constructs, and thus are no 
help in finding “relatively simple, well-defined functional-anatomical atoms.”  To 
overcome this, they performed an LDA analysis constrained both by the semantics of the 
terms and by groupings in spatial coordinates.  They report that, not only were they able to 
uncover topics with relatively clear functional upshot, (e.g., topics related to ‘emotion’), but 
that each topic “is associated with a single brain region”.  At first, this sounds a lot like the 



explanatory aims of the standard framework – i.e., to find a constrained localization 
corresponding to each psychological function. 
 
A closer reading questions this analysis, however.  As the researchers note, the probabilistic 
nature of the model suggests that the decoding analysis uncovers the construct most likely 
associated with a given area, but not the only one.  This is further illustrated by the fact that 
individual topics were allowed to spatially overlap in the model, and many multifunctional 
areas did indeed show significant overlap between related topics.  Further specifying to 
individual topics in many cases required conditioning further on more spatial coordinates, 
hence suggesting, again, distribution of function.  So, while the results in this model are 
predictive at a very specific construct-spatial level, it is not clear that this reflects the reality 
of the system.  And this is noted explicitly by the researchers.  It is worth quoting them in 
full: 
 
“While the topics produced by the model generally have parsimonious interpretations that 
accord well with previous findings, they should be treated as a useful, human-
comprehensible approximation of the true nomological network of neurocognition, and not 
as a direct window into reality. For the sake of analytical tractability, our model assumes a 
one-to-one mapping between semantic representations and brain regions, whereas the 
underlying reality almost certainly involves enormously complex many-to-many mappings. 
Similarly, rerunning the GC-LDA model on different input data, with different spatial 
priors, a different number of topics, or with different analysis parameters would necessarily 
produce somewhat different results“ (Rubin et al., 2017, p. 14).     
 
So, while one trend in the literature is to look for increasingly specific relationships between 
extant psychological constructs and patterns of activation, it is not clear that even successful 
results in this endeavor substantiate, or should be read as attempting to substantiate, the 
standard framework. 
 
4.2.  Revise? 
 
The idea that the databasing and brain mapping project can help us revise our cognitive 
ontology is extremely common.  For example, Poldrack and Yarkoni (2016) suggest that 
“formal cognitive ontologies [are useful] in helping to clarify, refine, and test theories of 
brain and cognitive function” (p. 587), and that “biological discoveries can and should 
inform the continual revision of psychological theories” (p. 599). 
 
These quotes suggest that, ultimately, the role of the databasing and brain mapping project 
will be in helping us to explicate our mental ontology.  Sometimes, this is pitched in terms 
of a discovery science – we should let the brain tell us what its functional categories are, 
and revise our ontology accordingly (Poldrack et al., 2012).  In this section, I suggest two 



related problems for this view.  The first is the interpretability problem, and the second is the 
seeding problem.  In general, however, the issue is this:  without a rubric for how and when 
to revise our mental categories in light of brain mapping data, we lack the ability to use 
results from brain mapping to revise the ontology in any specific way.  This suggests that 
metaphysical commitments about the nature of mental states precede, rather than being 
compelled by, brain mapping data. 
 
The interpretability problem is akin to a problem discussed by Carlson et al. (2018; cf. 
Ritchie, Kaplan, and Klein, 2016) for uncovering neural representations via machine learning 
techniques.  They argue that, given a particular ability to decode some stimulus from neural 
activity, it is unclear how to interpret that result in terms of representational content.  The 
worry, I take it, is that the ability to decode a stimulus from an activation does not mean 
that the activity represents the stimulus under anything like the way we would describe it.  
The analogue problem here is that, simply showing that a pattern of activity in the brain is 
specific to, say, decision-making (or to a high topic loading on a topic that happens to 
comprise words we associate with decision-making), doesn’t give us any indication of 
whether the pattern of activity is in fact performing something we would call “decision-
making.”  The more distribution and overlap uncovered in the analysis, the more 
exacerbated this problem becomes, because of the inferential freedom discussed in section 
2.   
 
So, given the association of a pattern of activity with a mental construct, should we take 
that construct as substantiated, as in need of explication, or what?  What degree of 
correlation/predictability, or what degree of specificity, is required to count the kind as 
substantiated, and at what point should we consider it in need of revision?  The brain 
mapping results themselves provide no rubric for how to make these decisions. 
 
The seeding problem is related to the interpretation problem, and is based on the fact that 
even constructing the analyses requires adhering, to an unspecified degree, to our extant 
cognitive constructs.  In an analysis based on Brain Map or the Cognitive Atlas, one only 
considers concepts that are a current part of our mental ontology.  This presumes that the 
basic structure of the brain corresponds closely enough to those categories in order for them 
to be useful in understanding the brain.  But what justifies this assumption?  In principle, a 
specific-enough correlation between mental constructs and brain activity might justify the 
assumption, but it is precisely a lack of specificity of this type that prompts the idea of 
ontology revision.   
 
In topic-modeling analyses, the topics that are often focused upon are the ones that one can 
intuitively or statistically pair with an already-known mental construct.  Varoquaux et al., 
for example, advertise that 100 of the 200 topics in the model correspond to well-
understood mental constructs.  What about the other ones, however?  Even given a 



substantiation of some of our mental categories, what the analysis would suggest is that our 
ontology is at least impoverished, and it does not come with any prescriptions for what to 
say in these other cases. 
 
Again, the point of this is not to discount the analysis.  The point of if it is just to deny that, 
the analysis on its own offers us any principled way of revising our cognitive ontology.  Put 
differently, the principles for ontology revision cannot be uncovered bottom-up from these 
analyses.  Metaphysical commitments must be undertaken in constructing and interpreting 
the analyses themselves.  Again, theorists in the field recognize this problem.  Poldrack and 
Yarkoni (2016), for instance, note that there is “no algorithmic way” to approach ontology 
revision in light of specific mapping results.  They seem to suggest, however, that more 
analysis and case-by-case thinking will allow for sufficient explication.  The individuation 
and seeding problems should raise concerns for that approach.   
 
4.3.  Abandonment? 
 
One also finds more-or-less explicit discussion of the explanatory ideals of the standard 
framework in the literature.  The clearest cases of these are Yarkoni and Westfall (2017) and 
Anderson (2014).  Yarkoni suggests explicitly that results from databasing and brain 
mapping projects suggest abandoning explanation altogether, in favor of a purely predictive 
neuroscience.  Anderson’s view does not cite prediction per se, but does suggest that we 
need to change to a dispositional approach to brain organization, wherein we do not 
understand a part of the brain as contributing a specific causal influence at a specific time, 
but instead as exhibiting dispositions to contribute to a range of functions.   
 
I lack the space to assess these proposals in detail, but for my purposes it suffices to note 
that they both, more-or-less-explicitly, move away from the mechanistic kind of explanation 
inherent to the standard framework.  Much has been said about the relative merits of 
mechanistic explanation versus prediction in explanation (Craver 2006), and now is not the 
time to re-adjudicate these issues.  What I want to argue for in the remainder of the paper is 
that abandoning the standard framework is not itself equivalent to abandoning mechanistic 
explanation.  Instead, we can abandon the standard framework by abandoning the central 
explanatory role it affords to mentalistic constructs.   
 
5.  An Alternative View. 
 
5.1.  Mental constructs as heuristics. 
 
My proposal is based around the following negative claim:  posits of psychological faculties do 
not explain behavior.  Individuation problems arise from the notion that posits of 
psychological faculties are explanatory.  That is why they must be distinct from each other; 



that is why they must be discretely realized; and that is why causal interactions between 
them need to be established.  Get rid of their explanatory status, and all of those problems 
go away – it’s not particularly worrisome of psychological kinds are not clearly distinct 
from each other, if specific behavioral tasks don’t measure only one of them at the expense 
of others, or even if they massively “crosscut” the causal patterns we measure in the brain 
(Hochstein, 2016; Weskopf, 2011) 
 
This leaves us with two questions.  First, what does explain behavior?  And second, do 
psychological posits play any role in understanding it?  These questions can be asked 
within the context of brain mapping projects as well.  What sort of explanation should these 
projects be seen as working towards?  And should mental concepts play any role as they 
seek them?   
 
My answers are as follows.  First, information processing in the brain explains behavior 
directly, and not in virtue of instantiating some particular mental function.  As I will 
attempt to show, this proposal is compatible with each brain area being multifunctional, 
and with function generally being distributed (Author’s papers).  Second, mentalistic 
concepts are best understood as playing a heuristic role (cf. Feest, 2010).   Rather than 
serving as explanantia, we should view mental categories as helping us parse behaviors 
into rough, and revisable, similarity classes.  They provide traction on an otherwise 
impossibly complex space of behavioral abilities, and guide search for important 
distinctions between types of behaviors, so that we can then investigate how the brain 
implements those differences.  Importantly, they can play this role even if there is no fact of 
the matter about which neural processes implement which psychological constructs.  Hence, 
no individuation problems are faced. 
 

 
 

Figure 2.  The heuristic approach to mental constructs. 
 

5.2.  An exemplar. 
 



The heuristic view makes a number of invocations about successful explanations in 
neuroscience.  First, overlap between mental constructs across tasks and contexts should be 
just as important separation between them.  Second, understanding the differences in 
structure between tasks is paramount for understanding neural function.  Third, assuming 
spatial decomposition between distinct purported mental faculties would limit, rather than 
enabling, understanding of how the system works. 
 
I will discuss one example in detail.  Murray, Jaramillo, and Wang (2017) pursued a 
modeling study of the interaction between the prefrontal cortex and the posterior parietal 
cortex.  The initiating motivation for their study is that both the PFC and the PPC have been 
shown physiologically to be involved across a wide range of both working memory (WM) 
and decision-making (DM) tasks.  The question, then, is what their distinct contributions 
are.   
 
Murray et al.’s approach was as follows.  They modeled each area as a fully recurrent 
neural network, and each area had distinct sub-populations selective for distinct perceptual 
stimuli.  The PFC and PPC networks were bi-directionally connected via long-range 
projections.  The main difference between the two populations was a difference in local 
structure.  In particular, the PFC population was modeled as having a higher degree of 
internal influence – both in self-excitation of each subpopulation, and in inhibitory 
connections between them, than the PPC.  Given this network structure, the investigators 
could model the dynamics of the system in a range of task types, and think about how the 
network responded in each. 
 
Murray et al. posited that one key factor involved in working memory tasks is multi-
stability.  That is, the network can represent a range of possible stimuli, but given that it has 
already represented one, it must maintain that information across a delay, perhaps in the 
presence of distractors.  So, they modeled the presentation of a stimulus and whether its 
representation could be maintained in the network even as other modeled stimuli were 
presented.  What they showed is that a particular dynamics occurred during “successful” 
working memory trials, in which both PFC and PPC populations represented the stimulus 
during presentation.  During delay, presentation of a distractor would “switch” the PPC 
representation to representing the distractor, but PFC would not switch.  After presentation 
of the distractor, the PFC  PPC long range connections would enforce the PPC 
populations to “switch back” to representing the remembered stimulus.  This model 
predicted a range of physiological results found in PFC and PPC during these kinds of 
tasks, as well as predicted types and durations of distractor-presentation that would cause 
errors.  Importantly, this explanation relied on the degree of internal connection in each 
area, and the feedback connections from the PFC to the PPC.  If the internal connections 
within the PFC were not sufficiently strong, then it would not maintain the representation 
during distractor presentation. 



 
For decision tasks, the investigators asked whether the network could produce an evidence-
accumulation-to-threshold kind of process.  These processes have been shown to be 
important for a range of decision-making processes including perceptual decision and 
multi-attribute choice (Teodorescu and Usher, 2013).  They modeled a perceptual decision-
making task, in which one out of a range of possible perceptual outcomes must be decided 
on in the presence of a noisy signal.  They showed that the network could implement an 
evidence-accumulation process, in which buildup of evidence occurred primarily in the 
PPC population and selection of outcome in the PFC population.  Intriguingly, these 
dynamics also were dependent on the degree of internal structure in the populations.  
Specifically, if the PFC population had a lesser degree of internal recurrent influence, the 
network would evolved towards a decision more slowly, whereas if it was strongly 
internally connected it would evolve very quickly.  As predicted, at a higher degree of 
internal influence the network “decided” faster, which in turn contributed to more errors 
when the stimulus was noisier, and more time to integrate evidence would have been 
helpful. 
 
So, the very same network could implement both the kind of information processing 
required in a WM task, and the kind required in a perceptual DM task.  One of the most 
intriguing results, however, is that these two kinds of information processing trade off in a 
network.  Greater resistance to distraction in the PFC network required a high degree of 
internal influence in that module.  But a high degree of internal influence also shortened the 
timeline over which perceptual evidence could be accumulated.  They posited that the 
particular structure of the PFC-PPC circuit helps ameliorate this tradeoff.  In particular, if 
one removed the recurrent connections from the PFC to the PPC, then high performance in 
the decision-making task would result in lower performance in the working memory task. 
 
I suggest that this kind of modeling project results in a mechanistic understanding of the 
network, but only by exhibiting the three properties I discussed above.  First, the 
understanding of the circuit developed in the study starts out from the data point that both 
working memory and decision employ overlapping circuits.  Second, understanding the 
informational requirements that are in common and differ across tasks is central to the 
explanation.  In particular, there is something in common between working memory and 
decision-making tasks, namely that it is useful to have both a population that is multiple in 
its responses paired with a more categorically responding population.  The difference in 
internal structure between the PFC and the PPC leads to the former having more univocal 
responses, which lead to both its robustness in WM contexts and its thresholding behavior 
in DM contexts.  However, the differences between the tasks are also vitally important, 
because they illustrate the tradeoff in the network.  WM contexts benefit from stronger 
interconnection, since it increases resistance to distractors.  But DM contexts benefit from 
weaker interconnection, since it allows for increase in evidence-gathering.  This in turn 



leads to a mechanistic hypothesis, namely that the distinction between the PFC and PPC 
circuits in their degree of self-influence, and the feedback connection from the former to the 
latter, help ameliorate this tradeoff. 
 
Importantly, because the explanation takes this form, it would be a mistake to attempt to 
spatially map WM and DM to distinct brain systems.  There is not one part “doing” 
working memory and another part “doing” decision-making, and therefore there is not a 
causal relationship between so-individuated parts.  There is one distributed circuit 
underlying those intuitively distinct functions.  Given this, I submit, there is no 
metaphysically important distinction between working memory and perceptual decision-
making.  What there are are distinct task demands, and the ways in which those demands are 
implemented by a distributed system.   
 
The heuristic view, on the other hand, simply doesn’t assume that there is a fact of the 
matter about (i) whether WM is really distinct from DM, (ii) which tasks measure one versus 
the other, or (iii) whether a brain part really performs one rather than the other.  What it 
suggests, as seems to be the case, is that there are deep commonalities in the brain systems 
performing these functions.  The explanation also does not require that there be any firm 
division between the ultimate set of tasks that are WM, versus those that are DM, tasks.  
There are simply tasks with different informational requirements that are implemented 
differently in the network. 
 
This is compatible with working memory and decision-making having played important 
heuristic roles in the understanding of this system.  It was not, perhaps, initially obvious 
what the relationship between WM and DM might be.  The concepts were operationalized 
differently.  However, the persistent discovery of overlapping involvement in each of these 
tasks by the distributed PFC/PPC circuit led to the question of exactly how these functions 
are implemented.  This led to a modeling project which uncovered both the commonalities 
and the differences between the informational requirements of, and the neural processing 
instantiating, tasks that correspond more-or-less closely to each of these categories.   
 
I have only discussed one example, but I take this to be an exemplar of how multifunctional 
distributed circuits might be decomposed.  I discuss a variety of other examples in other 
venues.  If this case is exemplary, however, then it stresses the normative bit of the heuristic 
approach, as opposed to that of the standard framework. 
 
6.  Normative upshot. 
 
6.1  For ontologies. 
 



Whether each process instantiates attention, some form of memory, or something else, I 
contend, is not as important for explaining how the brain works as the informational 
demands of the particular task.  The normative upshot for databasing projects is that more 
explicit attention needs to be paid to the kinds of behavioral paradigms at work and the 
way that they tend to vary (Figdor, 2010; Sullivan et al., 2021)   
 
This is not to say that databasing projects have not paid attention to tasks.  Projects such as 
the “Cognitive Paradigm Ontology” (Turner and Laird, 2012) are specifically intended to 
index the different types of behavioral experiments involved in studying cognition, and 
Sochat and colleagues (2017) have recently argued that standardization and publicity of 
experimental design is vital for coordinating study of cognition between laboratories.  But 
the particular way in which tasks are approached in the field tends to strongly mirror the 
standard framework.  For instance, Sochat et al. (2016) argue that the Cognitive Atlas 
should be “integrated” with a task ontology, but which they means by this is that each type 
of behavioral experiment should be categorized according to the kind of psychological 
function it is used to study.  Standardization is important so that neuroscientists can “select 
paradigms based on the specific cognitive functions that they are thought to measure” 
(2016, p. 7).   
 
The heuristic approach views the situation differently.  While an investigator may “base” 
their search for behaviors to study on associations with cognitive functions that interest 
them, this basis is a heuristic one and not a measurement one.  That is, a neuroscientist 
interested in “working memory,” broadly speaking, should not find particular behavioral 
paradigms because they measure that explanatory construct, but instead as a way of looking 
for behavioral distinctions that may make a difference in how the brain processes 
information.    
 
This has important upshot for how databases are constructed.  In Neurosynth and the 
Cognitive Atlas, behavioral tasks are given abstract definitions, the assumption being that 
their role is to measure cognitive functions rather than themselves serving as explananda.  
In the Cognitive Paradigm Ontology and Brain Map, importantly, there are entries for 
experimental manipulations like epoch, stimulus, and response, but as far as I can tell these 
categories have not been standardized, organized for comparative analysis, or as rigorously 
codified as the mental constructs have been.   
 
From the standpoint of the heuristic approach, this is generally insufficient.  In the 
exemplars above, what makes a difference for explanation is understanding how the brain 
responds differentially to variations in task demands, from the presentation of the stimulus, 
often through a delay or across learning, to an eventual behavior.  Differential responses to 
these variations are what explain how the brain implements the behavior.  Other sub-fields 
of neuroscience employ different variations – for instance, other areas of decision-



neuroscience specifically vary reward types and regimes in conjunction with changes in 
stimuli and behavioral requirements.  But entries in ontologies almost never contain 
detailed information of this sort, or at least that information is not standardized and 
codified.   
 
Now, given the potentially infinite ways that behavior can be varied, codifying the kinds of 
behavioral and stimulus changes, the durations of temporal epochs and how they relate, 
etc., will be both a significant and a difficult task.  But it is exactly the point of databasing 
projects to codify large amounts of data and make it accessible across individuals trying to 
explain things in a field.  The normative bite of the novel view is that this project is more 
important than trying to find the “true specificity” between abstract mental constructs and 
brain activity. 
 
This is not to deny that psychological concepts should be included in databasing projects.  
What it does suggest though is that the current state of the situation, on which most tasks 
are associated with a range of cognitive concepts, is neither surprising nor problematic.  If 
the goal of these concepts is to serve as heuristics in search for behavioral paradigms is to 
index potential behavioral differences, rather than the reverse, then it is not surprising that 
these constructs should overlap both with each other and in the brain, and there is no need 
to try to theorize that overlap away.   
 
So, suppose a neuroscientist is interested in ‘working memory’ or ‘decision’.  They 
approach a databasing tool in trying to devise research questions and develop experiments.  
What they find is that their construct of interest overlaps with other related constructs, and 
they find a huge number of extant behavioral distinctions that have been shown to make a 
difference in how the brain operates in, broadly, those cognitive contexts.  This allows them 
to understand the behavioral distinctions that have been done, where brain activity has 
been measured in these conditions, etc.  If they are interested in a particular part of the 
brain, they may find related behavioral measures that might clarify its function.  If they are 
interested primarily in a construct, they may find a range of areas and distinctions that they 
could investigate, or use in the backdrop of forming new ones.  The use of the psychological 
construct is a heuristic for investigation, rather than an explanatory claim. 
 
This is, of course, an ideal, but I think it is an ideal that is importantly distinct from the 
current focus in databasing and brain mapping projects. 
 
6.2.  For functional connectivity analyses. 
 
An exciting series of recent functional connectivity studies have begun the attempt to 
uncover dynamic principles for the entire brain during the course of behavior.  Functional 
connectivity measures the co-activation of brain regions, with the assumption being that co-



active regions are coordinating in producing the relevant behavior.  One can track changes 
in functional connectivity with changes in task or even across temporal epochs of the same 
task.  One can then ask a variety of questions about the functional principles underlying 
these changes. 
 
Here are just a few examples.  Shine et al. (2016) hypothesized that network 
interconnectivity scales with task complexity.  So, they measured functional connectivity in a 
range of tasks, and compared the overall degree of connectivity in the brain during each.  
They showed that “language” tasks or “working memory” (in this case, N-back) tasks 
resulted in higher levels of connectivity then more “simple” motor tasks.   
 
Other studies have attempted to spatially decompose the brain into parts that help organize 
its dynamic changes across tasks, versus those that are in charge of performing those tasks.  
So, Shine et al. (2018) took whole-brain data across a range of tasks and applied principal 
components analyses to both the spatial and temporal data.  They showed that the first 
principal component in the temporal domain correlated with activity in the spatial regions 
associated with the “rich club” network, and hypothesized that these regions underlie an 
across-task organizing function, whereas regions more closely responding to the other 
components were more task-specific.   
 
This is cutting-edge work, and I do not wish to speculate too much on its eventual upshot.  
What I want to suggest, however, is that the heuristic approach offers distinct normative 
prescriptions than the standard framework for how to pursue further investigation.  The 
standard framework suggests that these dynamical processes must be divided up, both 
spatially and temporally, according to distinct psychological faculties, and the causal 
relationship between those faculties explained.  The heuristic view denies this necessity.  
Instead, it invocates the need to understand the structure of the tasks further – what 
distinctions in stimuli or behavioral requirements drive the different dynamic shifts, and 
what about the function of the brain networks involved enables them to enact those 
requirements specifically? 
 
The authors of these studies seem to view them, at least in part, as stepping beyond the 
standard framework.  As Shine and Poldrack note:  “these results shifted the focus from 
where in the brain a particular function resides to how the coordinated recruitment of 
segregated specialist neural regions works together to accomplish the challenges associated 
with complex behavioral tasks” (2018, p. 396). 
 
But it is important to note that, at least as of now, the invocations of the heuristic approach 
have not been followed.  For instance, there is no analysis of what “complexity” of tasks 
amounts to in the Shine et al. (2016) paper.  The notion is left intuitive.  Nor is there any 



analysis of what exactly makes tasks “language” tasks versus “memory” tasks in the other 
studies.  This is a lacuna in these projects, according to the heuristic approach.   
 
7.  Conclusions. 
 
A number of years ago, it was common for textbooks in philosophy of mind to teach the 
following:  either our intuitive conception of the mind, with its commitments to intentional 
attitudes, etc., is true, or behaviorism is.  I hope this strikes the modern reader as almost 
charmingly anachronistic.  One can find newer versions of the dichotomy, however.  Uttal 
(2001), in his famous criticism of fMRI research, argues that the alternative to discovering 
discrete localizations for distinct cognitive faculties is to view the mind as “unanalyzable,” 
by which he means indivisible into distinct parts.  More recently, Hutto et al. (2017) have 
suggested that the way to react to the “protean” – by which they mean dynamically 
reconfigurable – functionality of the brain is to embrace enactivist views of cognition, with 
their attendant rejection of mental representation and computation (Anderson, 2014; 
Silberstein & Chemero, 2013). 
 
I have tried to argue that one can abandon the standard explanatory framework of 
cognitive neuroscience, and its attendant commitments about psychological constructs, 
without abandoning mechanistic explanation in the brain.  And, while I haven’t argued for 
it here, I claim elsewhere (Author’s paper) that this general approach extends to 
representational explanation as well.  The heuristic approach to cognitive ontology is a very 
different stance on explanation than is currently assumed in the literature, and I believe it 
deserves to be taken as a realistic option in this emerging field. 
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